The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages
نویسندگان
چکیده
The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Brahma (Brm) complex functions cooperatively with another chromatin remodeling factor, Histone deacetylase 3 (HDAC3) to suppress the formation of ectopic type II neuroblasts. We show that multiple components of the Brm complex and HDAC3 physically associate with Earmuff (Erm), a type II-specific transcription factor that prevents dedifferentiation of INPs into neuroblasts. Consistently, the predicted Erm-binding motif is present in most of known binding loci of Brm. Furthermore, brm and hdac3 genetically interact with erm to prevent type II neuroblast overgrowth. Thus, the Brm-HDAC3-Erm repressor complex suppresses dedifferentiation of INPs back into type II neuroblasts. DOI: http://dx.doi.org/10.7554/eLife.01906.001.
منابع مشابه
dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila.
To ensure normal development and maintenance of homeostasis, the extensive developmental potential of stem cells must be functionally distinguished from the limited developmental potential of transit amplifying cells. Yet the mechanisms that restrict the developmental potential of transit amplifying cells are poorly understood. Here we show that the evolutionarily conserved transcription factor...
متن کاملPrefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation.
Prefoldin is a molecular chaperone complex that regulates tubulin function in mitosis. Here, we show that Prefoldin depletion results in disruption of neuroblast polarity, leading to neuroblast overgrowth in Drosophila larval brains. Interestingly, co-depletion of Prefoldin and Partner of Inscuteable (Pins) leads to the formation of gigantic brains with severe neuroblast overgrowth, despite tha...
متن کاملThe Drosophila BRM complex facilitates global transcription by RNA polymerase II.
Drosophila brahma (brm) encodes the ATPase subunit of a 2 MDa complex that is related to yeast SWI/SNF and other chromatin-remodeling complexes. BRM was identified as a transcriptional activator of Hox genes required for the specification of body segment identities. To clarify the role of the BRM complex in the transcription of other genes, we examined its distribution on larval salivary gland ...
متن کاملIdentification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells.
Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains approximately 100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here, we use...
متن کاملNotch maintains Drosophila type II neuroblasts by suppressing expression of the Fez transcription factor Earmuff.
Notch signaling is crucial for maintaining neural stem cell (NSC) self-renewal and heterogeneity; however, the underlying mechanism is not well understood. In Drosophila, loss of Notch prematurely terminates the self-renewal of larval type II neuroblasts (NBs, the Drosophila NSCs) and transforms type II NBs into type I NBs. Here, we demonstrate that Notch maintains type II NBs by suppressing th...
متن کامل